skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lewis, Adrian S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 31, 2026
  2. Free, publicly-accessible full text available April 1, 2026
  3. Free, publicly-accessible full text available February 1, 2026
  4. Free, publicly-accessible full text available December 20, 2025
  5. Differentiable structure ensures that many of the basics of classical convex analysis extend naturally from Euclidean space to Riemannian manifolds. Without such structure, however, extensions are more challenging. Nonetheless, in Alexandrov spaces with curvature bounded above (but possibly positive), we develop several basic building blocks. We define subgradients via pro- jection and the normal cone, prove their existence, and relate them to the classical affine minorant property. Then, in what amounts to a simple calculus or duality result, we develop a necessary optimality condition for minimizing the sum of two convex functions. 
    more » « less
  6. Diverse optimization algorithms correctly identify, in finite time, intrinsic constraints that must be active at optimality. Analogous behavior extends beyond optimization to systems involving partly smooth operators, and in particular to variational inequalities over partly smooth sets. As in classical nonlinear programming, such active‐set structure underlies the design of accelerated local algorithms of Newton type. We formalize this idea in broad generality as a simple linearization scheme for two intersecting manifolds. 
    more » « less